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Abstract
We derive an exact expression for the two-point correlation function for
quantum star graphs in the limit as the number of bonds tends to infinity. This
turns out to be identical to the corresponding result for certain Šeba billiards
in the semiclassical limit. The reasons for this are discussed. The formula
we derive is also shown to be equivalent to a series expansion for the form
factor—the Fourier transform of the two-point correlation function—previously
calculated using periodic orbit theory.

(Some figures in this article are in colour only in the electronic version; see www.iop.org)

PACS numbers: 0540, 0545M

1. Introduction

The statistical distribution of quantum energy levels is a much studied topic. It has been
conjectured that generic, classically integrable systems give rise to uncorrelated quantum
spectra [1], while the energy levels of generic classically chaotic systems have the same
statistical properties as the eigenvalues of random matrices [2]. This has been confirmed by
semiclassical theory [3, 4], and in a large number of numerical studies, but classes of systems
have also been found for which it is not true; these include geodesic motion on surfaces of
constant negative curvature [5], and the cat maps [6].

Quantum graphs [7, 8] are mathematical models introduced in order to explore the
connection between the periodic orbits of a system and the statistical properties of its energy
levels. The trace formula, in which the level density is connected to a sum over periodic orbits,
is exact for graphs, rather than a semiclassical approximation, and the orbits can be classified
straightforwardly. However, despite the fact that numerical computations have revealed good
conformance of the spectral statistics of many quantum graphs to the predictions of random
matrix theory (RMT), few conclusive analytical results have been obtained so far. This is
due to the fact that although some individual finite graphs can be shown to reproduce certain
features of RMT behaviour [9–11], the full RMT results can only be recovered in a limit in
which one is forced to consider larger and larger graphs, and this necessitates finding general,
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Figure 1. A star graph with v edges (a) and a Šeba billiard (b).

combinatorial asymptotic techniques for dealing with the (non-trivial) length degeneracies of
periodic orbits.

One family of graphs in which this goal has been achieved are the star graphs [12] (defined
below and shown in figure 1), but in this case the resulting spectral statistics are neither RMT
nor Poissonian (i.e. those of random numbers). It turns out, however, that it is not the first
time that such statistics have arisen in the connection with the study of quantum chaos. Our
purpose here is to demonstrate that the star graphs have exactly the same two-point spectral
correlations as a large class of quantum systems, which we will refer to as Šeba billiards.

The original Šeba billiard, a rectangular quantum billiard perturbed by a point singularity
(also illustrated in figure 1), was introduced in [13] as an example of a system whose classical
counterpart is integrable (the singularity affects only a set of measure zero of the orbits)
but which nonetheless exhibits properties of quantum chaos. This construction was later
generalized to all integrable systems [14] perturbed in the same way. We will refer to any
system in this class as a Šeba billiard.

The energy levels of a Šeba billiard can be found by solving an explicit equation which
depends on the levels of the original unperturbed system and on the boundary conditions
imposed at the singularity. This equation takes the general form

λξ(z) = 1 (1)

where ξ(z) is the meromorphic function

ξ(z) =
∑
n

|ψn(x0)|2
En − z

(2)

the sum being suitably regularized to ensure convergence. Here {Ei} are the eigenvalues
of the unperturbed system, ψn(x0) is the value of the nth unperturbed eigenfunction at
the position x0 of the singularity, and the coupling constant λ parametrizes the boundary
conditions [13,14]. Assuming that {Ei} are given by a Poisson process, one can then calculate
the associated spectral statistics, such as the joint level distribution, asymptotics of the level
spacing distribution [14], and the two-point spectral correlation function [15]. The results
show the presence of spectral correlations but are substantially different from the RMT forms.

Here we apply the methods developed for Šeba billiards in [15] to calculate the two-point
spectral correlation function for star graphs, starting from an expression which is analogous
to (2). The formula obtained will be shown to be a resummation of the expansion computed
from the periodic orbit sum in [12]. Our main result will be that this correlation function is
the same as that already found for Šeba billiards in the case when |ψn(x0)|2 = constant (e.g.
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when the billiard is rectangular with periodic boundary conditions) and λ → ∞. We finish
with a discussion of reasons for this coincidence.

2. Quantum star graphs

Star graphs are metric graphs of the type shown in figure 1 with a Schrödinger equation

− d2

dx2
j

�j = k2�j xj ∈ [0, Lj ] (3)

defined on the bonds and boundary conditions, for example

�j(0) = �k(0) (4)∑
j

d

dxj
�j (0) = 0 (5)

d

dxj
�j (Lj ) = 0 (6)

specified on the vertices. Here Lj is the length of the j th bond, j = 1, . . . , v, and the real
variable xj varies from 0 to Lj , with 0 corresponding to the central vertex and Lj to the outer
vertex. The lengthsLj are assumed to be incommensurate; see [12] for further details. We refer
to positive values of the parameter k for which the system (3)–(6) is solvable as eigenvalues
of the quantum star graph.

Denoting the ordered sequence of eigenvalues by {ki}∞i=1, we define the spectral density
by

d(k) =
∞∑
i=1

δ(k − ki). (7)

The statistic we shall mainly be concerned with is the two-point correlation function

R2(x) = 1

d
2

〈
d(k)d

(
k +

x

d

)〉
− δ(x) (8)

where d = 〈d(k)〉 is the mean density, δ(x) is the Dirac δ-function, and the average 〈·〉 is either
over k or over the bond lengths Lj (we shall specify which in each particular context). R2(x)

is an even function and hence so is its Fourier transform

K(τ) = 1 + 2Re
∫ ∞

0
(R2(x)− 1)e2π ixτ dx (9)

which is called the form factor.
A complete series expansion of the v→∞ limit ofK(τ) in powers of τ around τ = 0 was

derived for the star graphs in [12] using the trace formula and a classification of the periodic
orbits:

K(τ) = exp(−4τ) +
∞∑
j=2

∞∑
M=0

4j

j !
Cj,Mτ

M+j+1 (10)

where

Cj,M = (−2)M
M∑

K=0

(K + j − 1)!(M −K + j − 1)!

(M + j − 1)!
Fj (K,M −K) (11)

with

F1(K,N) =
(
K+N
N

)
(N + 1)!(K + 1)!

(12)
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Figure 2. The sum of the first 30 terms in the expansion (10) (dashed curve), which converges
in the range τ � τ ∗ ≈ 0.63, compared to the results of a numerical computation [8] of K(τ)

(circles). Also shown are the Padé approximations to the series of order [21/20] (thin solid curve)
and [23/23] (thick solid curve).

and

Fj (K,N) =
K∑
k=0

N∑
n=0

F1(k, n)Fj−1(K − k,N − n). (13)

Explicitly

K(τ) = e−4τ + 8τ 3 − 32
3 τ

4 + 16
3 τ

5 − 128
15 τ

6 + 16
9 τ

7 + 64
63τ

8 + o(τ 8). (14)

In this calculation, the average in (8) was over k. The result is in excellent agreement with the
numerical data (see figure 2) but is limited by the fact that the radius of convergence of the
series is finite, being approximately 0.63 (found by applying Cauchy’s test to the coefficients
in the series, but see also figure 2). The range of convergence can be extended using the Padé
approximation (again, see figure 2), which suggests that the singularity causing the divergence
is not on the positive real line [16].

Here we approach the problem from a different direction: it is possible to solve
equations (3)–(6) to derive an explicit condition on k to be an eigenvalue. Indeed, the general
solution of (3) on a star graph can be written in the form �j(x) = Aj cos(k(x + φj )),
j = 1, . . . , v. Applying condition (6), we obtain φj = −Lj while condition (4) on the
central vertex implies Aj cos(Ljk) = const. Finally, applying condition (5) and dividing by
Aj cos(Ljk) we obtain

v∑
j=1

tanLjk = 0. (15)

Similar expressions can easily be found when different boundary conditions are applied at the
central vertex. The general equation reads

v∑
j=1

tanLjk = 1

λ
(16)
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where λ is an arbitrary parameter. However, in the limit as v → ∞, λ fixed, the two-point
correlation function turns out to be independent ofλ (see the comment following equation (49)).
Our calculations will therefore be performed for λ−1 = 0.

Note the similarity between (16) and the quantization condition (1) for Šeba billiards when
|ψn(x0)|2 = constant.

Condition (15) means that k is an eigenvalue if and only if it is a zero of the function
F(k) =∑v

j=1 tanLjk, and so we can express the density d(k) as

d(k) = 1

2π

∫
|F ′(k)|eizF (k) dz = 1

2π

∫ v∑
s=1

Ls

cos2 Lsk
eiz

∑v
j=1 tanLj k dz. (17)

Our analysis of the spectral correlations will be based on this representation.

3. Mean density

As an example of the techniques to be employed later, we begin by calculating the mean density
d defined as

d = lim
�L→0,k→∞

〈d(k)〉{Lj } (18)

where now the average is with respect to the individual lengths of the bonds, rather than over
k:

〈·〉{Lj } =
∫ L0+�L

L0

· · ·
∫ L0+�L

L0

·dL1

�L
· · · dLv

�L
. (19)

That is, we assume that the lengths are independent random variables distributed uniformly
on the interval [L0, L0 +�L]. We also assume that �L and k tend to their respective limits in
such a way that �Lk→∞.

Applying this averaging to (17) we obtain

〈d(k)〉{Lj } =
1

2π

∫ ∞
−∞

dz
v∑

s=1

∫
· · ·
∫ L0+�L

L0

Ls

eiz
∑v

j=1 tan kLj

cos2 kLs

dL1

�L
· · · dLv

�L

= v

2π

∫ ∞
−∞

dz

(∫ L0+�L

L0

eiz tan kL dL

�L

)v−1(∫ L0+�L

L0

L
eiz tan kL

cos2 kL

dL

�L

)

≡ v

2π

∫ ∞
−∞

f̃ v−1(z)g̃(z) dz. (20)

Here

g̃(z) =
∫ L0+�L

L0

L
eiz tan kL

cos2 kL

dL

�L
≈ L0

�Lk

∫ tan k(L0+�L)

tan kL0

eiz tan kL d tan k L (21)

where we were able to approximate L by L0 because it is slowly varying (compared with
tan kL) and ultimately we will take the limit �L → 0. Now, since tan kL is a periodic
function with the period of π/k, and the integration is performed over the interval containing
approximately �Lk/π periods, we can further approximate

g̃(z) = L0

�Lk

(
�Lk

π

∫ ∞
−∞

eiz tan kL d tan k L + O(1)

)
≈ 2L0δ(z) (22)
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where O(1) is a quantity which is bounded as k�L→∞. Similarly

f̃ (z) =
∫ L0+�L

L0

eiz tan kL dL

�L
= L0

�Lk

∫ tan k(L0+�L)

tan kL0

eiz tan kL d tan k L

1 + tan2 kL

≈ 1

π

∫ ∞
−∞

eizα

1 + α2
dα = e−|z| (23)

where the last integral was evaluated by closing the contour in either the upper (z > 0) or
lower (z < 0) half-plane.

Substituting the results into (20) we obtain for the average density

d = v

2π
2L0

∫ ∞
−∞

e−(v−1)|z|δ(z) dz = L0v

π
(24)

which coincides with the result of averaging over k with the bond-lengths fixed [7, 8, 12].

4. Two-point correlation function

The two-point correlation function is given by

R2(x) = lim
�L→0,k→∞

1

d
2R

(
k, k +

x

d

)
(25)

where d is the mean density, the limit is taken in such a way that k�L→∞, and we take

R(k1, k2) = 〈d(k1)d(k2)〉{Lj }

=
〈 ∫ ∞
−∞

v∑
r,s=1

LrLse
i
∑v

j=1(z1 tan k1Lr+z2 tan k2Ls)

cos2 k1Lr cos2 k2Ls

dz

4π2

〉
{Lj }

(26)

with z = (z1, z2).
In this case, the analogue of (20) is that

R(k1, k2) =
∫ ∞
−∞
{vg(z)f v−1(z) + v(v − 1)φ1(z)φ2(z)f

v−2(z)} dz

4π2
(27)

where

f (z) = 1

�L

∫ L0+�L

L0

ei(z1 tan(k1L)+z2 tan(k2L)) dL (28)

g(z) = 1

�L

∫ L0+�L

L0

L2

cos2 k1L cos2 k2L
ei(z1 tan(k1L)+z2 tan(k2L)) dL (29)

φ1(z) = 1

�L

∫ L0+�L

L0

L

cos2 k1L
ei(z1 tan(k1L)+z2 tan(k2L)) dL (30)

φ2(z) = 1

�L

∫ L0+�L

L0

L

cos2 k2L
ei(z1 tan(k1L)+z2 tan(k2L)) dL. (31)

Substituting k1 = k, k2 = k + πx/(vL0), where x is fixed, and taking the limits k→∞,
�L→ 0 (while k�L→∞), we obtain for the first integral

f (z) = 1

�L

∫ L0+�L

L0

ei(z1 tan(kL)+z2 tan(kL+ πxL
vL0

)) dL

≈ 1

π

∫ π/2

−π/2
ei(z1 tan φ+z2 tan(φ+ πx

v
)) dφ (32)
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where we have again used L/L0 ≈ 1 and, as in the transition from (21) to (22), we have
approximated f by the integral over one period. We now write

tan
(
φ +

πx

v

)
= tan φ + tan( πx

v
)

1− tan φ tan( πx
v
)
= −β +

1 + β2

β − tan φ
(33)

where β = (tan(πx/v))−1 ∝ v/(πx) (we are interested in the v→∞ limit). Performing the
change of variables α = tan φ − β, we arrive at

f (z) ≈ eiβ(z1−z2)

π

∫ ∞
−∞

eiz1α−iz2
β2+1
α

dα

(α + β)2 + 1
. (34)

Note that f (z) is invariant under the exchange z1 ↔ z2 and β → −β, which can be verified
by the change of variables α = (β2 + 1)/y in (34).

To evaluate the integral in (34) we differentiate it with respect to z1 and z2 to get

∂f

∂z1
− ∂f

∂z2
= ieiβ(z1−z2)

π

∫ ∞
−∞

eiz1α−iz2
β2+1
α

(
2β + α +

β2 + 1

α

)
dα

(α + β)2 + 1

= ieiβ(z1−z2)

π

∫ ∞
−∞

eiz1α−iz2
β2+1
α

dα

α
= −eiβ(z1−z2)*(z1, z2) (35)

where

*(z1, z2) ≡ − i

π

∫ ∞
−∞

eiz1α−iz2
β2+1
α

dα

α

= 2sign(z1)H(−z1z2)J0

(
2
√
−(β2 + 1)z1z2

)
(36)

J0(x) being the Bessel function of the first kind andH(x) the Heaviside function (characteristic
function of the half axis [0,∞)).

Applying the method of characteristics to the PDE
∂f

∂z1
− ∂f

∂z2
= −eiβ(z1−z2)*(z1, z2) (37)

we obtain the solution

f (z) = e−|z1+z2| −
∫ z1

0
eiβ(2y−z1−z2)*(y, z1 + z2 − y) dy. (38)

Treating the integral for g(z) (see (29)) in a fashion similar to the one used to obtain (34)
leads us to

g(z1, z2) ≈ L2
0

π

∫ π/2

−π/2

ei(z1 tan(φ)+z2 tan(φ+πx/v))

cos2(φ) cos2(φ + πx/v)
dφ

= L2
0

eiβ(z1−z2)

π

∫ ∞
−∞

eiz1α−iz2
β2+1
α

(
1 +

(
1 + β2

α
+ β

)2
)

dα. (39)

Comparing this integral to the one in (36), and noting that

1 +

(
1 + β2

α
+ β

)2

= β2 + 1

α

(
α + β +

β2 + 1

α
+ β

)
(40)

we have that

g(z) = L2
0(β

2 + 1)

(
∂

∂z1
− ∂

∂z2

)
[eiβ(z1−z2)*(z1, z2)]. (41)

One can derive a similar expression for the functions φ1(z)

φ1(z) ≈ L0
eiβ(z1−z2)

π

∫ ∞
−∞

eiz1α−iz2
β2+1
α dα = L0eiβ(z1−z2)

∂

∂z1
*(z1, z2) (42)
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and φ2(z)

φ2(z) ≈ L0
eiβ(z1−z2)

π

∫ ∞
−∞

eiz1α−iz2
β2+1
α
(β2 + 1) dα

α2

= −L0eiβ(z1−z2)
∂

∂z2
*(z1, z2). (43)

Now we have all the ingredients necessary for evaluating the integral in (27). Substituting
the expression for g(z), (41), into the first half of the integral and integrating it by parts we
obtain ∫

dz

4π2
vf v−1g = vL2

0

∫
dz

4π2
f v−1(β2 + 1)

(
∂

∂z1
− ∂

∂z2

)
[eiβ(z1−z2)*]

= −vL2
0

∫
dz

4π2
(β2 + 1)eiβ(z1−z2)*

(
∂

∂z1
− ∂

∂z2

)
[f v−1(z)]

= v(v − 1)L2
0

∫
dz

4π2
(β2 + 1)f v−2e2iβ(z1−z2)*2. (44)

Thus

R2(x) = v(v − 1)L2
0

d
2

∫
dz

4π2
f v−2e2iβ(z1−z2)

[
(β2 + 1)*2 − ∂*

∂z1

∂*

∂z2

]
. (45)

Now we need to take the limit v → ∞. To do so we write f v−2(z) = e(v−2) ln f and rescale
f (z)

f (u/β) = e−
|u1+u2 |

β − 1

β

∫ u1

0
ei(2y−u1−u2)�(y, u1 + u2 − y) dy (46)

and hence, to leading order in 1/β = πx/v, we have

(v − 2) ln f (u) ≈ −πx
(
|u1 + u2| +

∫ u1

0
ei(2y−u1−u2)�(y, u1 + u2 − y) dy

)
≡ −πxQ (47)

where � is the rescaled function *

�(u) = *

(
u

β

)
= 2sign(u1)H(−u1u2)J0

(
2
√−u1u2

)
(48)

and we have taken the limit v→∞ (β →∞).
Renormalizing the rest of (45) and taking the limit v→∞ we obtain

R2(x) = 1

4

∫
du e−πxQe2i(u1−u2)

[
�2 − ∂�

∂u1

∂�

∂u2

]
. (49)

The only change when the above calculation is generalized to other boundary conditions at the
central vertex (i.e. to nonzero values of λ−1 in (16)) is the appearance of a factor e−λ

−1(z1+z2)

next to every occurrence of dz in the above integrals. For λ fixed, this factor disappears after
rescaling z = u/β and taking the limit β → ∞. Hence equation (49) is then independent
of λ. In the case when λ−1 = λ̃−1v, the dependence of the spectral statistics on the boundary
conditions at the central vertex persists. The above expressions then coincide with those for
Šeba billiards with a renormalized coupling constant, given in [15].

For the derivatives of the function � one has

∂�

∂u1
= 2

(
J0(0)δ(u1) + sign(u1)H(−u1u2)

u2J
′
0

(
2
√−u1u2

)
√−u1u2

)
(50)

∂�

∂u2
= 2

(
−J0(0)δ(u2) + sign(u1)H(−u1u2)

u1J
′
0

(
2
√−u1u2

)
√−u1u2

)
. (51)
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Therefore, using J0(0) = 1 and J ′0(x) = −J1(x)

∂�

∂u1

∂�

∂u2
= −4

(
δ(u1)δ(u2) + H(−u1u2)J

2
1

(
2
√−u1u2

))
. (52)

Thus

R2(x) = 1 +
∫

e−πxQ+2i(u1−u2)
[
J 2

0

(
2
√−u1u2

)
+ J 2

1

(
2
√−u1u2

)]
H(−u1u2) du. (53)

Now we perform the change of variables u2 �→ −u2 arriving at the following integral
representation of the two-point correlation function

R2(x) = 1 +
∫
D

e−πxM(u)+2i(u1+u2)
[
J 2

0

(
2
√
u1u2

)
+ J 2

1

(
2
√
u1u2

)]
du. (54)

Here the domain of integrationD includes first and third quadrants of the u1u2-plane andM(u)

is given by

M(u) ≡ M(u1, u2) = |u1 − u2| +
∫ u1

0
ei(2y−u1+u2)�(y, u1 − u2 − y) dy

= |u1| + |u2| − 2i sign(u1)

∞∑
r,s=1

(iu1)
r (iu2)

s(r + s − 2)!

r!s!(r − 1)!(s − 1)!
. (55)

Equation (54) constitutes an exact formula for R2(x) for star graphs in the limit v→∞.
It is our main result. The point we seek to draw attention to is that it is exactly the same as the
one obtained in [15] for Šeba billiards when |ψn(x0)|2 = constant in (2) and λ→∞. We will
expand on this observation later. First, we consider some of the properties of the two-point
correlation function and the form factor in more detail.

5. Expansion for large x

To derive an expansion of the two-point correlation function R2(x) for large x we notice that
since M(−u) = M(u), the integral over the third quadrant in (54) is equal to the complex
conjugate of the integral over second quarter-plane, i.e.

R2(x) = 1 + 2Re
∫ ∫ ∞

0
e−πxM(u)+2i(u1+u2)J (u) du (56)

where

J (u) = J 2
0

(
2
√
u1u2

)
+ J 2

1

(
2
√
u1u2

) = ∞∑
n=0

(−1)nun1u
n
2(2n)!

(n + 1)!(n!)3
. (57)

Now we can use the expansion of M(u), (55), to expand R2(x) in the powers of 1/x. We
substitute ui = γi/(xπ) and obtain

R2(x) = 1 + 2Re
1

x2π2

∫ ∫ ∞
0

dγ1 dγ2 e−γ1−γ2

[
1 +

2i(γ1 + γ2 − γ1γ2)

xπ

− (5γ1γ2 + 2γ 2
1 + 2γ 2

2 − 5γ1γ
2
2 − 5γ 2

1 γ2 + 2γ 2
1 γ

2
2 )

x2π2
+ O

(
1

x3

)]

= 1 + 2Re

[
1

x2π2
+

2i

x3π3
− 1

x4π4
+ · · ·

]
. (58)
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To compare this to the expansion (14) of K(τ) we note that if K(τ) = 1 +
∑∞

k=1 akτ
k for

τ > 0 then, inverting the Fourier transform in (9)

R2(x)− 1 = 2Re lim
ε→0

∫ ∞
0

(K(τ)− 1)e−2π i(x−iε)τ dτ (59)

= 2Re
∞∑
k=1

(−i

2π

)k+1
akk!

xk+1
. (60)

Applying this to

K(τ) = 1− 4τ + 8τ 2 − 8
3τ

3 + O(τ 4) (61)

we see that the first few coefficients of the two expansions agree. The proof that it is so for all
coefficients is given by the following proposition.

Proposition 1. The asymptotic expansion (58) of the two-point correlation function and the
expansion (10) of the form factor coincide under the Fourier transformation∫ ∫ ∞

0
e−πxM(u)+2i(u1+u2)J (u) du =

∫ ∞
0

(K(τ ′)− 1)e−2π ixτ ′ dτ ′. (62)

Proof. The Fourier transform in (62) establishes the correspondence between the terms in the
asymptotic expansion of

R̃2(x) =
∫ ∫ ∞

0
e−πxM(u)+2i(u1+u2)J (u) du (63)

and the terms of the small τ expansion of K(τ). This correspondence is

1

(2π ix)k
←→ τ k−1

(k − 1)!
. (64)

Our plan is to modify the integrand in the definition of R̃2(x), getting rid of the factor
e2i(u1+u2)J (u), expand the integral in inverse powers of x and apply the correspondence rule (64)
to recover (10).

First of all, as one can verify by direct substitution of the series for M(u1, u2)(
∂

∂α1
+

∂

∂α2

)(
xM

(α1

x
,
α2

x

))
=

∞∑
r,s=0

ir+s

(
r + s

r

)
(α1/x)

r(α2/x)
s

r!s!

= 2ei(α1+α2)/xJ0

(
2
√
α1α2

x

)
(65)

and

∂

∂x

(
xM

(α1

x
,
α2

x

))
=

∞∑
r,s=1

2ir+s+1 (r + s − 1)!(α1/x)
r(α2/x)

s

r!s!(r − 1)!(s − 1)!

= −2i
√
α1α2

x
J1

(
2
√
α1α2

x

)
ei(α1+α2)/x . (66)

Applying (66)

∂2

∂x2
e−πxM(

α1
x
,
α2
x
)

= e−πxM
(
−4π2 α1α2

x2
J 2

1 e2φ − 2π i

x3

(
2J0eφα1α2 + iJ1eφ

√
α1α2(α1 + α2)

))
(67)
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where φ = i(α1 + α2)/x and for simplicity we have omitted the argument (α1/x, α2/x) of the
functions M , J0 and J1.

Similarly, using (65), we have(
∂

∂α1
+

∂

∂α2

)2

e−πxM(
α1
x
,
α2
x
)

= e−πxM
(

4π2J 2
0 e2φ − 2π i

α1α2x

(
2J0eφα1α2 + iJ1eφ

√
α1α2(α1 + α2)

))
. (68)

Noticing the similarity between (67) and (68), we subtract the first from the second, with the
appropriate factors, to obtain

1

4π2

[
1

x2

(
∂

∂α1
+

∂

∂α2

)2

− 1

α1α2

∂2

∂x2

]
e−πxM(

α1
x
,
α2
x
) = 1

x2
[J 2

0 + J 2
1 ]e2φe−xM (69)

where, as before, the argument (α1/x, α2/x) ofM , J0 and J1 has been omitted. The right-hand
side of (69) is exactly the integrand of (56) if we perform the change of variables ui = αi/x

and, therefore

R̃2(x) =
∫ ∫ ∞

0

dα1 dα2

4π2

[
1

x2

(
∂

∂α1
+

∂

∂α2

)2

− 1

α1α2

∂2

∂x2

]
e−πxM(

α1
x
,
α2
x
). (70)

The first term in the integral can be evaluated as follows:∫ ∫ ∞
0

dα1 dα2

4π2x2

(
∂

∂α1
+

∂

∂α2

)2

e−πxM(
α1
x
,
α2
x
)

=
(
−
∫ ∞

0

dα2

4πx2
[3]∞α1=0 −

∫ ∞
0

dα1

2πx2
[3]∞α2=0

)
(71)

where

3 =
(

∂

∂α1
+

∂

∂α2

)
e−πxM(

α1
x
,
α2
x
) = 2ei(α1+α2)/xJ0

(
2
√
α1α2

x

)
e−πxM. (72)

Since

[3]∞α1=0 = −2eiα2/xe−πα2 [3]∞α2=0 = −2eiα1/xe−πα1 (73)

we obtain ∫ ∫ ∞
0

dα1 dα2

4π2x2

(
∂

∂α1
+

∂

∂α2

)2

e−πxM(
α1
x
,
α2
x
) = 1

2πx2

2

π − i/x
. (74)

Now we can expand the result in inverse powers of x and apply the correspondence rule (64).
We obtain

1

πx

1

πx − i
= −

∞∑
k=0

(
i

πx

)k+2

←→ 2
∞∑
k=0

(−2τ)k+1

(k − 1)!
= 2(e−2τ − 1). (75)

Next we need to expand the second part of the integrand in (70)

∂2

∂x2
e−πxM = ∂2

∂x2
e−π(α1+α2) exp

(
2π i

∞∑
r,s=0

(iα1)
r+1(iα2)

s+1(r + s)!

xr+s+1r!s!(r + 1)!(s + 1)!

)

= e−π(α1+α2)
∂2

∂x2

[ ∞∑
j=0

(2π i)j

j !

( ∞∑
r,s=0

(iα1)
r+1(iα2)

s+1(r + s)!

xr+s+1r!s!(r + 1)!(s + 1)!

)j]
. (76)
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Using the same notation as in (12)( ∞∑
r,s=0

(iα1)
r+1(iα2)

s+1(r + s)!

xr+s+1r!s!(r + 1)!(s + 1)!

)j
=
( ∞∑

r,s=0

(iα1)
r+1(iα2)

s+1

xr+s+1
F1(r, s)

)j

=
∞∑

R,S=0

(iα1)
R+j (iα2)

S+j

xR+S+j
Fj (R, S) (77)

where, as before, Fj (R, S) is the j th convolution of F1(R, S) with itself. Thus

∂2

∂x2
e−πxM(

α1
x
,
α2
x
) = e−π(α1+α2)

∞∑
j=1

(2π i)j

j !

∞∑
R,S=0

(R + S + j − 1)!(iα1)
R+j (iα2)

S+j

(R + S + j + 1)!xR+S+j+2
Fj (R, S).

(78)

Finally we integrate against dα1 dα2/(4π2α1α2) to arrive at

−
∫ ∫ ∞

0

dα1 dα2

4π2α1α2

∂2

∂x2
e−πxM(

α1
x
,
α2
x
)

= −
∞∑
j=1

(2π i)j

4π2j !

∞∑
R,S=0

(R + S + j + 1)!(R + j − 1)!(S + j − 1)!

(R + S + j − 1)!(−iπ)R+S+2j xR+S+j+2
Fj (R, S)

←→ τ

∞∑
j=1

(4τ)j

j !

∞∑
R,S=0

(−2τ)R+S(R + j − 1)!(S + j − 1)!

(R + S + j − 1)!
Fj (R, S). (79)

This is exactly the same as the j sum in (10) with the exception of the extra j = 1 term in the
summation above. For j = 1 we have

4τ 2
∞∑

R,S=0

(−2τ)R+SR!S!

(R + S)!
Fj (R, S) =

∞∑
R,S=0

(−2τ)R+S+2

(R + 1)!(S + 1)!

=
( ∞∑

R=0

(−2τ)R+1

(R + 1)!

)( ∞∑
S=0

(−2τ)S+1

(S + 1)!

)

= (1− e−2τ )2 = 1− 2e−2τ + e−4τ (80)

which, together with the terms 1 and 2(e−2τ − 1), gives the correct contribution e−4τ . �

6. Singularities of the form factor

One can also obtain some information about the singularities of K(τ) by Fourier transforming
the integral representation (56). There is, however, a subtle problem associated with this
approach. The form factor is by definition an even function defined on the real line. What
we want to get from transforming (56) is an analytic function which coincides with the form
factor for real τ > 0, so as to be able to study its complex singularities.

As we saw above

R̃2(x) =
∫ ∫ ∞

0
e−πxM(u)+2i(u1+u2)J (u) du =

∫ ∞
0

(K(τ ′)− 1)e−2π ixτ ′ . (81)

Integrating (81) against e2π ixτ on the real line we obtain∫ ∞
−∞

R̃2(x)e
2π ixτ dx = K(τ)− 1 τ > 0. (82)



Star graphs and Šeba billiards 347

One can check that this leads to the correct power series expansion of the form factor: give x
a small negative imaginary part, x �→ x − iε, in R̃2(x) (this is consistent with (81)), substitute
in the asymptotic expansion (56), and integrate term-by-term.

We now use R̃2(−x) = R̃2(x) to write∫ ∞
−∞

e2π ixτ R̃2(x) dx =
∫ ∞

0
(e2π ixτ R̃2(x) + e−2π ixτ R̃2(x)) dx. (83)

The only factor R̃2(x) which depends on x is e−πxM(u) and∫ ∞
0

e2π ixτ e−πxM(u) dx = 1

π(M(u)− 2iτ)
. (84)

Thus we have for the form factor

K(τ) = 1 +
1

π

∫ ∫ ∞
0

[
e2i(u1+u2)

M(u)− 2iτ
+

e−2i(u1+u2)

M(u) + 2iτ

]
J (u) du. (85)

The representation (85) presents us with a way to find the singularities of K(τ). These
are given by the condition τ = M(us)/(2i) and τ = M(us)/(2i), where the point us is such
that

∂M

∂u1
(us) = ∂M

∂u2
(us) = 0. (86)

The derivative with respect to u2 is

∂M

∂u2
= 1− 2

∫ u1

0

[
ei(y+z)J1

(
2
√
yz
)√

y/z− iei(y+z)J0
(
2
√
yz
)]

dy (87)

where z = y − u1 + u2 and we have assumed that u1 > u2 > 0. It is obvious from the
expansion (55), however, that the function M(u) is continuously differentiable if u1u2 > 0
and hence that the expression (87) is valid for all u1 > 0 and u2 > 0. The integral in (87) is
not easy to analyse and to simplify it we reduce our search to the line u2 = u1, where

∂M

∂u2
(u2 = u1) = 1− 2

∫ u1

0
e2iyJ1(2y) dy + 2i

∫ u1

0
e2iyJ0(2y) dy. (88)

Performing the second integration by parts∫ u1

0
e2iyJ0(2y) dy = e2iyJ0(2y)

2i

∣∣∣∣
u1

0

+
2

2i

∫ u1

0
e2iyJ1(2y) dy (89)

we obtain, after simplification,

∂M

∂u2
(u2 = u1) = e2iu1J0(2u1). (90)

Since ∂M
∂u1

(u2 = u1) = ∂M
∂u2

(u2 = u1), we see that the zeros of the derivatives of M(u) on the
line u2 = u1 are given by the zeros of the Bessel function J0. The nearest zero is at us ≈ 1.202.
Thus one of the singularities of K(τ) lies at τs = M(1.202, 1.202)/(2i) = 0.462 − 0.420i.
We note that |τs | = 0.624, which coincides with our previous numerical estimate of the radius
of convergence of the series expansion of K(τ) in powers of τ around τ = 0. This strongly
suggests that this singularity is the closest to the origin. To this end, we can prove the following.

Proposition 2. Among the singularities arising from stationary points of M(u1, u2) along the
line u2 = u1, the singularity at τs = M(1.202, 1.202)/(2i) is the nearest to the origin.
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Proof. To show that the statement is true we need to prove that the function |M(u, u)|2 is a
nowhere decreasing function of u. On the line u1 = u2 = u we have

M(u, u) =
∫ 2u

0
eiyJ0(y) dy = 2e2iuu(J0(2u)− iJ1(2u)). (91)

Thus |M(x/2, x/2)|2 = x2(J 2
0 (x) + J 2

1 (x)) and its derivative is, after simplification,
d

dx |M(x/2, x/2)|2 = 2xJ 2
0 (x) � 0. �

It is straightforward to approximate the behaviour of K(τ) near these singularities. We
expand

M(u) ≈ M(us) +
1

2

∂2M

∂u2
1

(us)(u1 − u2)
2 +

1

2

∂2M

∂u2
2

(us)(u2 − us)
2

+
∂2M

∂u1∂u2
(us)(u1 − us)(u2 − us)

= M(us) + αs(u1 − us)
2 + (u2 − us)

2. (92)

For the singularity associated with the first Bessel zero, αs ≈ 0.385 − 0.349i. Then, when τ

is real

K(τ) ≈ 1

παs

∫ ∫ ∞
0

J (u)e2i(u1+u2) du

(u1 − us)2 + (u2 − us)2 + (M(us)− 2iτ)/αs
+ c.c. (93)

The main contribution to the integral around these singularities is

K(τ) ∝ −C ln

(
1− 2iτ

M(us)

)
− C ln

(
1 +

2iτ

M(us)

)
(94)

where C = J (us)e4ius /αs . Expanding (94) into a series around τ = 0 we get

K(τ) ∝ 2Re

(
C

∞∑
n=1

ρn einφ

n
τn
)
= 2A

∞∑
n=1

cos(φn + ψ)
ρn

n
τn (95)

where, for the singularity analysed above, A = |J (us)e4ius /αs | ≈ 0.519, ψ =
arg(J (us)e4ius /αs) ≈ −0.737, ρ = |2i/M(us)| ≈ 1.602 and φ = arg(2i/M(us)) ≈ 0.737.
By Darboux’s Principle, the coefficients of the expansion (95) should comprise the leading
contribution to large-order asymptotics of the exact coefficients given by (10) and (11). To
compare them we plot the exact coefficients nan/ρ

n against the approximate coefficients
2A cos(φn + ψ). The result is shown in figure 3.

7. Small x limit of R2(x)

Returning to (49), one can check that the function �, defined by (48), satisfies the equation[
∂2

2∂u1∂u2
+ i

(
∂

∂u1
− ∂

∂u2

)]
(e2i(u1−u2)�2) = e2i(u1−u2)

(
∂�

∂z1

∂�

∂z2
−�2

)
. (96)

Substituting it into (49) and integrating by parts we obtain

R2(x) = −1

4

∫
du e−πxQ

[
∂2

2∂u1∂u2
+ i

(
∂

∂u1
− ∂

∂u2

)]
(e2i(u1−u2)�2)

=
∫

du

4
e2i(u1−u2)�2

[
i

(
∂

∂u1
− ∂

∂u2

)
− ∂2

2∂u1∂u2

]
(e−πxQ). (97)
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Figure 3. The coefficients of the power series expansion of K(τ) normalized by ρn (crosses),
compared to (95). As expected, the agreement improves as n increases.

Now, using the identities

∂Q

∂u1
− ∂Q

∂u2
= ei(u1−u2)�

∂2Q

2∂u1∂u2
= −iei(u1−u2)� (98)

which one can derive using the series expansion of Q(u1, u2) = M(u1,−u2), we write[
i

(
∂

∂u1
− ∂

∂u2

)
− ∂2

2∂u1∂u2

]
(e−πxQ)

= e−πxQ
(
−iπx

(
∂Q

∂u1
− ∂Q

∂u2

)
+
πx

2

∂2Q

∂u1∂u2
− (πx)2

2

∂Q

∂u1

∂Q

∂u2

)

= − e−πxQ
(

3iπx

2
ei(u1−u2)� +

(πx)2

2

∂Q

∂u1

∂Q

∂u2

)
. (99)

Thus we obtain, finally,

R2(x) = −
∫

du

8
e2i(u1−u2)−πxQ�2

[
π2x2 ∂Q

∂u1

∂Q

∂u2
+ 3iπx�ei(u1−u2)

]
. (100)

From (100) one can see that the two-point correlation function R2(x) is linear in x for small
x. The slope was computed in [15]

R2(x) = π
√

3

2
x + O(x2). (101)

8. Discussion

The derivation presented above provides a proof that two-point spectral correlations for certain
Šeba billiards and quantum star graphs are the same, in the appropriate limits. This initially
surprising fact has its explanation in the following observations. First, the dynamics in both
systems is centred around a single-point scatterer; in star graphs it is the central vertex, and in
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Šeba billiards the singularity. Furthermore, in between scatterings the dynamics is integrable
in both cases.

Second, applying the Mittag–Leffler theorem to the meromorphic function tan z, we have
that

tan z =
∞∑

n=−∞

(
1

nπ + π/2− z
− 1

nπ + π/2

)
. (102)

We can, therefore, rewrite (16) in a form similar to (1) when |ψn(x0)|2 = constant. It thus
becomes less surprising that the two-point correlation functions of the two systems are the
same, because in the limit v → ∞ the poles in (15) have properties similar to those of a
Poisson sequence.

Third, from the mathematical point of view star graphs and Šeba billiards are similar in
that in both cases the scattering centre corresponds quantum mechanically to a perturbation of
rank one.

Finally, we remark that our results demonstrate that, at least as regards the special case
considered here, graphs are able to reproduce features of other, experimentally realizable,
quantum systems, and also that they provide further confirmation that spectral statistics can be
computed exactly using the trace formula when the periodic orbit statistics are known [12].
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[14] Albeverio S and Šeba P 1991 J. Stat. Phys. 64 369
[15] Bogomolny E, Gerland U and Schmidt C 2000 Singular statistics Preprint
[16] Berkolaiko G 2000 Quantum star graphs PhD Thesis University of Bristol


